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In the present work, we apply new tools from the field of adiabatic dynamical systems 
theory to make quantitative predictions of various important mixing quantities in 
quasi-steady Stokes flows which possess slowly varying saddle stagnation points. Many 
of these quantities can be obtained before experiments or numerical simulations are 
performed using only knowledge of the streamlines in steady-state flows and the 
externally determined flow parameters. The location and size of the main region in 
which mixing occurs is determined to leading order by the slowly sweeping 
instantaneous stagnation streamlines. Tracer patches get stretched by an amount 
O(l/e) during each period, and the average striation thickness of the patch decreases 
by a factor of e in the same time. Also, the rate of stretching of material interfaces is 
bounded from below with an analytically obtained exponentially growing lower 
bound. Finally, the highly regular appearance of islands in quasi-steady Stokes’ flows 
is explained using an extension of the KAM theory. As an example to illustrate these 
results, we study the transport of passive scalars in a low Reynolds number flow in the 
two-dimensional eccentric journal bearing when the angular velocities of the cylinders 
are slowly modulated, continuously and periodically in time, with frequency e. In 
contrast to the flows usually studied with dynamical systems, these slowly varying 
systems are singular perturbation (apparently far from integrable) problems exhibiting 
large-scale chaos, in which the non-integrability is due to the slow, continuous O( 1) 
modulation of the position of the saddle stagnation point and the two streamlines 
stagnating on it. 

1. Introduction 
Experimentally and numerically, it has been discovered that a patch of tracer fluid 

in a time-periodic Stokes flow rapidly develops into a highly striated lamellar structure 
as it gets stretched exponentially and folded, see Aref & Balachandar (1986), Chaiken 
et al. (1986, 1987), Chien, Rising & Ottino (1986), Leong & Ottino (1989), and 
Swanson & Ottino (1990). Although the flows in these studies are laminar, they 
simultaneously possess chaotic particle paths and large-scale structures, such as 
whorls, tendrils, periodic points, Smale horseshoes, and islands. To date, the tools used 
for extracting quantitative information about these flows have been a posteriori. For 
example, Lyapunov characteristic exponents have been computed for some of these 
flows with different geometries and mainly with stirring protocols of the ‘blinking’ 
type, where, to take the case of eccentric journal bearing flow, the two cylinders are 
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rotated alternately in time in an on-off, or ‘blinking’, fashion. Using these aposteriori 
measures it is verified that nearby trajectories separate exponentially in time. In 
addition, it is typically found that a spatially non-uniform distribution exists for the 
finite-time measurements of stretch rates which depends in a nonlinear way on the flow 
parameters, see for example Muzzio, Ottino & Swanson (1991). Despite the fact that 
the empirical stretching rates obtained from these experimental and numerical 
techniques have been well-correlated with the flow parameters, no theory has been 
developed to date with the power to predict these rates before numerical or 
experimental simulations are performed. 

The present work is also directed toward the goal of quantifying stretching and 
mixing. However, rather than rely on a posteriori measures, we develop for the first 
time a predictive theory for stretching and mixing quantities in quasi-steady Stokes 
flows exhibiting large, O(1)-sized chaotic regions. 

We study transport of tracer particles in a low Reynolds number flow in a two- 
dimensional, counter-rotating eccentric journal bearing. This geometry, discussed in 
$2, is widely used in the study of mixing, see for example Aref & Balachandar (1986), 
Chaiken et al. (1986, 1987), Aref & Jones (1989), and Swanson & Ottino (1990). We 
show analytically that large-amplitude, continuous, slow, and periodic modulation of 
the angular velocities of the cylinders in time, as specified in $3, causes the integrable 
steady-state flow to exhibit large non-integrable regions. In contrast to the near- 
integrable (small-amplitude perturbations) flows usually studied with dynamical 
systems, however, these slowly varying systems are singular perturbation problems in 
which the non-integrability is due to the slow and continuous O( 1)-amplitude 
modulation of the position of the saddle stagnation point and the two streamlines 
stagnating on it. Thus, they appear to be far from integrable. 

In 94, an analytical technique is established to determine the location and size of the 
region in which mixing occurs, a region we call the mixing zone. The mixing zone is, 
to leading order, a large part of the O( 1)-sized region swept out by the instantaneous 
separatrices during the modulation period. In $4, we also show that a priori control 
over the location and size of the mixing zone is possible using the three independent 
flow parameters: i?, the eccentricity of the bearing; AQ, the difference between the 
maximum and minimum of the ratio of the cylinder angular velocities; and c, the 
modulation frequency. As an example to illustrate this control, we determine the choice 
of parameters (within the context of our modulation protocols) for which the mixing 
zone occupies almost the entire fluid domain. Surprisingly, this combination consists 
of choosing i? to be fairly small, so that the bearing is nearly concentric, AQ to be large 
so that the instantaneous saddle stagnation point moves across most of the 
gap between the two cylinders, and c to be moderately small, but not too small: 
0.14 d c d 0.34. Part of the theory in $4 relies on Arnol’d’s extension of KAM theory 
to adiabatic dynamical systems. That the standard KAM theorem does not apply 
directly was previously recognized in Kaper & Wiggins (1989) and in Swanson & 
Ottino (1990). 

In $ 5 ,  a transport theory for the evolution of tracer particles in the mixing zone is 
developed using the slowly oscillating homoclinic tangle (the time-dependent analogue 
of the stagnation streamlines) as a template. As is well known in two-dimensional 
mixing studies, the mechanism governing transport across the tangle are the lobes 
formed by the segments of stable and unstable manifolds of the fixed points of the 
Poincare map. However, the different structure of homoclinic tangles and lobes in 
adiabatic systems, as compared to all of the other flows - all near-integrable - to which 
these methods have been applied to date, requires special treatment. In particular, the 
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shape of these lobes readily makes them identifiable as the mechanism by which the 
modulation causes the patches of tracer to develop into elaborately striated and folded 
lamellar structures. This refines the notion in the quasi-steady Stokes literature that 
tracer evolves along unstable manifolds. Finally in $5.4, we analytically derive 
exponentially growing lower bounds on the stretch rates for manifolds and tracer 
patches. 

The results presented in 994 and 5 are valid for a range of small 6, but none, save one, 
are asymptotic results. In $6, we obtain c+O asymptotic results using recently 
developed tools (see Kaper, Kovacic & Wiggins 1990; Kaper & Wiggins 1991a; and 
Elskens & Escande 1991) from the field of adiabatic dynamical systems. An adiabatic 
dynamical system is a Hamiltonian system which depends on a parameter (or a 
function) that varies slowly in time, but the size of the variation may be large. 
Adiabatic systems are singular perturbation problems, because of the presence of two 
asymptotically distinct timescales. The general form for time-dependent one-degree-of- 
freedom adiabatic dynamical systems is 

where q, p ,  and z are scalars, z is the slowly varying parameter, H = H(q,p;  z = ct)  is 
the Hamiltonian, and 0 < c < 1. 

This theory gives asymptotic (as t: + 0) formulae valid for all times, including the 
short times of most interest in mixing, for the areas and lengths of lobes, for the average 
striation thickness of lamellar tracer patches (which constitutes a convective 
lengthscale), and for the rate of stretching of material interfaces. Lobe length increases 
by a factor of O ( ~ / E )  during each period of the modulation, and the average striation 
thickness of a patch of tracer decreases by a factor of O(c) every period. The ability to 
predict and control these quantities theoretically is important, and represents a step 
beyond the methods which rely on experimental data or the calculation of Lyapunov 
exponents. The theory also overcomes the limitations of dynamical systems tools that 
appIy only to near-integrable systems, i.e. tools such as the usual Melnikov function 
(see Guckenheimer & Holmes 1983). Finally, the theory leads to a practical way in 
which our definition of the various mixing quantities, such as mixing zone, can be 
verified. 

In 97, we explain theoretically for the first time the highly regular appearance of 
islands in quasi-steady Stokes flows, which contrasts with the behaviour of islands in 
regularly perturbed (near-integrable) flows. Adiabatic dynamical systems theory yields 
their location and states that their size is no bigger than O(e), as 8 + 0. In $8, we briefly 
discuss the precise sense in which these systems are chaotic. In $9, we discuss the 
robustness of our model by analysing the influence of the inertial terms. We also 
indicate how our results apply to other quasi-steady Stokes flows with slowly moving 
hyperbolic points, such as the two-roll mill, the cavity flow, and a geophysical flow, 
even when no analytical or numerical representation of the stream function is 
available. Finally, we present some results from numerical simulations which 
incorporate molecular diffusivity. 

The difference between our modulation protocols and the ‘stirring’ protocols used 
in the literature may be summarized as follows. The protocols used in the literature 
prescribe the angular velocities of two cylinders R, and R,, where the subscripts 1 and 
2 refer to the casing and the shaft, respectively, either as a fairly rapid stirring: 

Ql(t) = 52, + cos wt ,  Q,(t) = sz, -cos ot, 
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where o and 52, are 0(1), quantities for i = 1,2, and Q1(t)52,(t) < 0 for all t ;  or as a 
blinking modulation : O<t<aT 

aT< t < T, Q,(t> = 

O<t<<T 
5 2 2 w  = {:, i T < t < T ,  

where 0, + Q,, 0,52, < 0, and the period, T, is long compared to the characteristic 
time of the steady-state flow (Aref & Balachandar 1986; Swanson & Ottino 1990). 

In contrast, the modulation protocols introduced in $ 3  prescribe a slow, large- 
amplitude modulation : 

where 0 < E e 1, y is a real constant of O(1) magnitude, and 52, < - y < 0 < y < 52,. 
The Strouhal number, an independent dimensionless parameter for these externally 
modulated flows (see Batchelor 1967, p. 216), satisfies 0 < Str = EL/U < 1, since the 
characteristic velocities and lengthscales in the flow U and L are O(1) quantities 
independent of E .  

The slow modulation protocols used throughout the present work are chosen so that 
tracer patches are already highly stretched and folded during the first few periods of 
the modulation, and so as to take advantage of the fact that the adiabatic dynamical 
systems tools we use are well-suited to the timescales of interest in mixing. All of the 
results reported in the present work are verified numerically for 6 as large as 0.34. 

The highly striated, thin lamellar structures in our simulations look similar to those 
obtained with blinking protocols. This is not surprising since the Fourier representation 
of the square-wave blinking protocol is an infinite series consisting of a sine function 
and all of its integral harmonics. Thus, the more harmonics added in our protocol with 
the correct amplitude, the closer one approximates the blinking protocol. Also, the 
underlying streamline (or topographical) map gets changed abruptly only every half- 
period in the blinking case whereas for our modulation protocols it is continuously 
being changed by tiny increments at each time step. For more discussion of the 
differences and similarities of blinking and non-blinking protocols, we refer the reader 
to Ottino (1989), Swanson (1991, chap. 5),  and Swanson & Ottino (1990). 

A visual comparison shows that after approximately two and a half modulation 
periods, the highly striated, thin lamellar structures observed in our simulations look 
similar, in terms of striation length and thickness and in terms of the number of folds, 
to those obtained in comparable geometries for blinking protocols after ten periods 
with 6 = 630°, see figure 2 in Swanson & Ottino (1990). 

Because the modulation period is of length 27[3/e, the equations are stiff, and the 
numerics performed in this study for finding the fixed points of the PoincarC map and 
the manifolds are delicate. To integrate the equations, an implicit Gauss-Legendre 
symplectic fourth-order Runge-Kutta scheme was used. All numerical codes were 
tested on steady-state flows, reproducing the plots in Ballal & Rivlin (1976), and most 
computations were verified using a second symplectic integration scheme. Furthermore, 
for plotting the manifolds of the fixed point on the Poincare map, we used a routine 
especially suited to adiabatic systems, see Kaper (1991, Part I, Appendix C). Finally, 
the hyperbolic periodic orbits of the full system in the extended phase space were 
obtained using the technique of multiple shooting, which yields uniformly valid 
representations of unstable orbits. We refer the reader to Kaper (1991, Part 11) for the 
details of the numerical implementations. 

Finally, the results presented in Kaper & Wiggins (1991 a, b) and those in Elskens & 

0,(Et) = 52, + y cos Et, 5 2 , ( E f )  = 52, - y cos E f ,  
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FIGURE 1. Steady-state counter-rotating eccentric journal bearing flow, with a = 0.5, R, = 1 .O, R, = 
0.3, r =  0.3 (where for Ballal & Rivlin & = -0.9397, E2 = - 1.9966). The cylinders are the darkest 
circles. The inner circle rotates clockwise with 0, = -4, and the outer circle rotates counterclockwise 
with 8, = 1. 

Escande (1991) also apply to adiabatic dynamical systems in which Hhas more general 
dependence on z,  including quasi-periodic and bounded non-periodic modulation. 
Thus, these results can be applied to the corresponding time-dependent modulation 
protocol to obtain quantitative information about stretching and transport in quasi- 
steady Stokes flows with more general time-dependence. 

2. Steady counter-rotating flow 
The integrable equations for the evolution of tracer particles in the steady flow are 

where lC. is the stream function, x and y are the (canonically conjugate) Cartesian 
coordinates, and 0, and 0, are the angular velocities of the casing and the shaft, 
respectively. The stream function $ is linear in 0, and Q,, and we have converted its 
bipolar coordinate representation obtained in Ballal & Rivlin (1976) to Cartesian 
coordinates. The Reynolds number is defined as 

(RY 0; + Ri 0:); R,  Re = 3 

where R,  and R, denote the radii of the casing and shaft, respectively, with R, > R,, 
and v is the kinematic viscosity. In using the results of Ballal & Rivlin (1976), we take 
0 < Re 4 1, which is the limit of steady Stokes flow. Also, without loss of generality 
we take R, = 1.0. 

The parameters for the steady flow are: e =  Ax/(R,-R,) ,  the eccentricity of the 
bearing, where Ax is the distance (measured in the same Cartesian coordinates shown 

V 
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a A c B ~ 

e 

0.1 -1 4.3 86.0 9.7 
0.1 -2 8.4 75.1 16.5 
0.1 - 10 33.5 35.8 30.7 
0.1 - 20 50.9 21.4 27.7 
0.1 - 60 76.0 8.3 15.7 
0.3 -2 4.9 61.0 34.1 
0.3 - 10 23.7 22.0 54.3 
0.5 -0.2 0.9 70.0 29.1 
0.5 -1 1.7 55.2 43.1 
0.5 -2 3.2 43.2 53.5 
0.5 - 10 16.1 12.7 71.1 
0.5 - 60 39.5 2.7 57.7 
0.75 - 0.2 0.4 33.2 66.4 
0.75 -1 0.9 25.7 73.4 
0.75 -2 1.7 19.1 79.2 
0.75 - 10 7.7 4.7 87.6 
0.75 - 20 11.2 2.6 86.1 
0.75 - 60 15.7 1.4 83.0 

TABLE 1. Areas of the three regions in the steady-state flow domain as percentages of the total area 
inside the fluid domain and as a function of .? and a. Column A is for the region adjacent to the inner 
cylinder, C for that adjacent to the outer cylinder, and B is for the backflow region. 

in the figures) between the centres of the cylinders; a = Q,/O,, the ratio of the angular 
velocities; and, r= R,/R,, the ratio of the radii of the cylinders. Our e and Ax are 
identical to the variables Band s in Ballal & Rivlin (1976, see 82 and equation (8.23)). 
Furthermore, for simplicity, the results we report in the present work are for the 
geometry with r=  0.3. Simulations using other values of Fare qualitatively similar to 
those obtained with this choice. 

In the counter-rotating case (a, a2 < 0), see figure 1, there is precisely one saddle 
stagnation point X ,  (hyperbolic fixed point) on the x-axis in the narrow gap for all 
values of e, r, 0, and Q,, which is attached to itself by two stagnation streamlines 
(orbits homoclinic to the hyperbolic fixed point). These two stagnation streamlines, 
which are the inner and outer stagnation streamlines r a n d  A ,  respectively, separate the 
fluid domain into three regions: the annular area adjacent to the shaft; the kidney- 
shaped backflow region; and the annular region adjacent to the casing. Table 1 lists the 
areas of each of these three regions as a fraction of the total area for various values of 
E and a. 

A more complete catalogue of formulae and streamline plots, including ones for the 
non-counter-rotating cases, may be found in Ballal & Rivlin (1976). The reader may 
also find the relevant quantities in Kaper (1991, Part 11, Appendix A). 

3. Modulation protocols 

protocols : 
Throughout this work, we use the following two representative modulation 

(MP1) 
( M W  

where 0 < E 4 1. With the choice of (MP1) and (MP2), we operate well within the 
range of angular velocities for which Ballal & Rivlin (1976) report their results. Also, 
quasi-steadiness is maintained when the Stokes number St = sL2/v is small. 

Q,(d) = 1, Q,(et) = - 6 + ~ C O S  (st) ,  
Sz , (~ t )  = 1, Q,(E~) = - 30.5 +29.5 cos (st), 
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FIGURE 2. A patch of tracer dye, initially located in a circle in the mixing zone, evolves into a highly 
striated and folded structure. We show the patch at the end of the first, second, and third periods of 
the modulation, i.e. at times z = 2n, 4n and 4n in (a), (b) and (c) respectively. Flow parameters: 
Z =  0.1, ?= 0.3, E = 27c/30, and we used (MP1). 

Introduction of the modulation protocols makes the (2.1) non-integrable (see figure 

(3.1) 

2 for an example) and puts them in the form of an adiabatic dynamical system: 

all. all. 
A? = - k Y ;  Q,(z), Q,(z)), 9 = - - (x ,y ;  Q,(z), a&>), z = f% aY ax 

where the dependence of $ on z is through the slowly varying time-dependent functions 
Q,(z) and Q,(z) given by the modulation protocols. Since the modulation protocols are 
periodic in z = st and (3.1) is Hamiltonian, we use the area-preserving PoincarC map 

with zo E [0,27c), which gives a stroboscopic picture of the fluid domain. 
The flow parameter introduced by these modulations is AG = maxzElo, ,?) a ( z )  - 

minzE[o, zn) fi(z). It measures the amplitude of the modulation, since the ratio of 52, 
8 FLM 253 
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FIGURE 3. Potential mixing zones (shaded regions) for various parameters. (a) .T = 0.1 with (MPl); 
(b)  B = 0. I with (MP2); (c) .?? = 0.75 with (MP1). Note that in (c), To and An nearly coincide with the 
inner and outer cylinders, respectively. In all frames, f =  0.3. 

to Q, determines the location of the instantaneous saddle, see figure 3. For (MPl), 
Aa = 8 because a ( z )  varies in the interval [ -2, - 101, and A f i  = 59 for (MP2) because 
Q(z) varies in the interval [- 1, -601. Hence, (MP1) is a 'moderate' modulation, 
because the instantaneous saddle stagnation point moves slowly and periodically 
across a moderately large fraction of the gap between the cylinders, and (MP2) is a 
' strong ' modulation, because the instantaneous saddle stagnation point moves slowly 
and periodically across almost the entire gap between the cylinders. 

(MPl) and (MP2) have been chosen so that their implementation is the simplest 
experimentally. A computer-controlled stepping motor may be used to change the 
angular velocities of the inner cylinder many times per modulation period (L. G. Leal 
1989, personal communication). The apparatus described in Swanson & Ottino (1990) 
has this capacity. 

Experimental run times for (MP1) and (MP2) may be determined as follows. With 
8 = 0.14, and with the choice of moderate modulation (MPl), for example, the 
modulation period is 2 n / ~  z 44.9 non-dimensional time units, which is the longest 



Transport in Stokes j u w s  in the eccentric journal bearing 219 

modulation period for which good mixing is observed since e = 0.14 is the smallest E 

in the good parameter range. In this time, the outer and inner cylinders make 
approximately 45 and 269 revolutions, respectively. To convert to real time, assume 
R, = 7.5 cm and F =  0.3, and let the fluid be Chlorowax45, a chlorinated paraffin from 
Diamond Shamrock often used as a solvent for polymers, which has p = 1.3 g/cm3 and 
p = 190.0 P. Then, Re = 1 is obtained with an angular velocity of 0.7 revolutions per s, 
and one modulation period is approximately 386 s. 

A concept used often in the remainder of the present work is that of an instantaneous 
streamline. The instantaneous streamline is the closed trajectory the particle would 
execute if the system evolved with the value of z frozen at its instantaneous value. Thus, 
it coincides with the orbit of the steady-state flow (with a, and Q2 equal to their value 
at the instantaneous value of z )  that passes through the particle’s instantaneous 
position. Of course, since particle paths in the modulated flow no longer coincide with 
streamlines, this concept is a fictitious one; nevertheless it is often used in adiabatic 
dynamical systems, see Kaper & Wiggins (1991 a) and Escande & Elskens (1991), and 
it is helpful in the context of quasi-steady Stokes flows, as well. The inner and outer 
instantaneous stagnation streamlines at the instant of slow time z are denoted Tz and 
AZ,  respectively. The analogous concept exists for instantaneous stagnation points. 

4. Location and size of the mixing zone 
Although the four flow parameters e, AD, and E are mutually independent, the 

search for the combination of them which yields a predetermined mixing zone requires 
that we study their effects simultaneously. In $4.1, we begin by considering the 
influence of the first three parameters and define the concept of apotentiul mixing zone. 
Then, in 5s4.2-4.4, we add to these considerations the influence of e, which determines 
how much of the area potentially available for mixing is actually used. 

As an example to illustrate the control over the mixing process, we focus at various 
points in this section on the problem of maximizing the mixing zone size. In the 
counter-rotating regime, for the geometry with F = 0.3, the largest possible mixing zone 
is obtained when the parameters are chosen such that : e z 0.1 ; AD is large, so that a ( z )  
varies in an interval which is finite, negative, and as large as possible, on the order of 
[ - 1, - 601 as in (MP2) ; and E is moderately small, but not too small, for this example, 
in the interval 0.14 < E < 0.34, see figure 3(b). With this choice of parameters the 
mixing zone occupies virtually the entire fluid domain. Also, islands in this zone are 
negligibly small for this optimal choice of parameters. 

4.1. The parameters c and AD and the potential mixing zone 
In much of the 0(1) area swept out by the (fictitious) instantaneous streamlines, the 
theory of adiabatic invariance and Arnol’d’s extension of the KAM theorem to 
adiabatic Hamiltonian systems are not applicable because one of the main assumptions 
that those theories rely on ceases to be valid on and near stagnation streamlines, which 
are zero-frequency orbits. The violated assumption is that the frequency of the 
instantaneous steady-state orbits be one order of magnitude larger, i.e. O( l), than the 
modulation frequency E .  Observations collected from theoretical and numerical work 
on various model problems in physics (see Cary, Escande & Tennyson 1986; Cary & 
Skodje 1989; Bruhwiler & Cary 1989; Kaper & Wiggins 1991 a, and Elskens & Escande 
1991) suggest that tracer particles can explore most of this swept-out area because there 
are very few barriers to their transport in this region. Hence this is the region in which 
mixing can be expected to occur. We caution, however, that there is a piece of the 

8-2 
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- 
e 

0.1 
0.1 
0.3 
0.5 
0.5 
0.75 
0.75 

Protocol 
MP 1 
MP2 
MP1 
MP1 
MP2 
MP1 
MP2 

Total area (%) 
57.5 
87.3 
53.0 
40.2 
75.9 
18.9 
33.5 

TABLE 2. Area of the potential mixing zone as a function of e and the modulation protocol. The area 
of the entire domain is 2.8588 scale units and the potential mixing-zone area is given as a percentage 
of the total fluid domain. 

swept-out area in which adiabatic invariance does apply despite the fact that there are 
instantaneous separatrices there. In 94.2, we make this precise. 

For (MP1) and (MP2), the region swept out may be specified exactly as 

where Tz and A' denoted the inner and outer instantaneous stagnation streamlines at 
time z. Because the measure of the set (4.1) is to leading order the area potentially 
available for mixing, the set (4.1) is called the potential mixing zone, see figure 3 and 
table 2. 

The symmetry in (MP1) and (MP2) about z = n, namely @z) = @2n-2) for 
z E (n, 2x1, implies that we only need to take the unions over Z E  [0, n] in (4.1). For 
more general protocols, the unions are taken over all z between the two values of 
z corresponding to an instantaneous separatrix which locally (i.e., compared to the 
instantaneous separatrices for nearby values of z )  encloses a maximum area and an 
instantaneous separatrix which locally encloses a minimum area (see Kaper & Wiggins 
1991 a). 

Pursuing the example of maximizing the size of the mixing zone, we see from the data 
in table 2 that the choice of F < 0.1, combined with prescribing D(z) to vary in the 
largest possible finite negative interval, maximizes the size of the potential mixing zone. 

4.2. The parameter E and the actual mixing zone 
We focus throughout the following subsections on the sample case 6=  0.1, 
z, = Omod2n, and in which (MP1) is used. This choice is made for illustrative 
purposes only. There exist two qualitatively different regimes - one, corresponding 
to small values of e ( E  < 0.1 in this sample case) in which the actual mixing zone is 
considerably smaller than the potential mixing zone, see figure 4(b), and the other 
corresponding to moderate values of ~(0.14 < E < 0.34 for this sample case) in which 
the actual mixing zone is as big as the potential mixing zone, see figure 4(a). The value 
of the lower bound of the moderate range ( E  = 0.14 for the sample case) can be 
obtained analytically by knowing the thickness of the minimal backflow region; i.e. 
before experiments or numerical simulations are performed. The transition between 
the small and medium size 6 regimes (0.1 < e < 0.14 for the sample case) is smooth. 

For e small, a large part of the minimal instantaneous backflow region appears to 
be a regular zone, and the actual mixing zone is smaller than the potential zone (4.1). 
Thus, we show that for small E ,  the actual mixing zone is equal to the potential mixing 
zone minus most of the minimal backflow region except the strip S;  plus the strips S;  
and S; around the inner and outer peripheries of the potential mixing zone. 
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FIGURE 4. Actual mixing zones (all with F = 0.3, and all have the instantaneous stagnation streamlines 
To, do, P, and An superimposed): (a) p = 0.1, E = 2n/40, with (MP1); integrated one point for 10000 
periods. (b) E =  0.1, e = 2n/120, with (MPl); integrated one point for 10000 periods. The 
instantaneous backflow region contains a large regular zone. (c) = 0.75, E = 2n/60, with (MP1); 
integrated one point for 10000 periods. ( d )  F =  0.1, E = 2n/40, with (MP2); integrated one point for 
20 000. 

Consider that part of the backflow region in which the orbital frequency w is much 
larger than the modulation frequency e. Adiabatic invariance theory states that a tracer 
particle will move slowly from one instantaneous streamline to the next, but always in 
such a way that the area enclosed by these streamlines is the same to leading order (to 
O(E/W)). If the tracer particle is injected at the initial value of the slow time zl, we 
denote the area enclosed by the instantaneous periodic streamline that it starts on by 
A,q(z,). Now, because the instantaneous backflow region increases and decreases in size 
periodically during the modulation, only those orbits for which A,,(z,) is sufficiently 
less than the area occupied by minimum backflow region, where the minimum is taken 
over all z ,  stay in this region for all times and have an adiabatic invariant. See table 1 
for an example with 8=  0.1 and (MPI) for which the backflow region occupies 
minimal area at z = 0 mod 2n and the area occupied is 16.5 YO. 



222 T. J .  Kaper and S.  Wiggins 

8 2 ln2(1 / E )  k layer r‘ layer 
0.105 0.056 0.050 0.126 
0.052 0.024 0.016 0.037 
0.035 0.014 0.005 0.027 

TABLE 3. Thickness of the layer 5’; for .?= 0.1 and F =  0.3, with (MPl). 

Arnol’d’s extension of the KAM theorem (see Arnol’d, Neishtadt & Kozlov 1988 for 
an exposition) for slow, periodic and quasi-periodic modulations gives slightly more 
information. This theory applies to quasi-steady Stokes flows since all of the orbits in 
the steady-state back-flow region satisfy a twist condition, (dw/dI) (I, z) =k 0 for all z,  
where w is the frequency of the unperturbed orbit with action I. In particular, the 
theory states that most of the orbits for which Ap&) is sufficiently less than the size 
of the minimal backflow region lie on invariant tori. Arnol’d introduced a sequence of 
transformations, including an averaging-based coordinate change, to bring the 
equations of motion of an adiabatic system into the standard form for KAM theory, 
although they constitute properly degenerate systems. Using this transformation, he 
proved that most of the unperturbed periodic orbits survive as invariant tori (Arnol’d 
tori) on which orbits evolve quasi-periodically. For adiabatic systems, ‘most’ implies 
that the part of phase space in which there are no tori on the Poincard section has a 
total size of O(e-C/e) as E + O  where c is a constant which satisfies c > 0. In particular, 
the ribbons of stochasticity in between adjacent tori must be transcendentally narrow 
annuli. We label an area which is covered by these persistent tori as a regular zone. 

Thus, excluding an annular strip around the inside of the periphery of the 
instantaneous backflow region, the Arnol’d tori occupy all but some exponentially 
vanishing part. We must exclude the region occupied by tori from the actual mixing 
zone. We show a case in which the minimum backflow region contains a large regular 
zone in figure 4(c). 

This is the first explanation of the highly integrable appearance of regular zones in 
quasi-steady Stokes flows. In fact, in the singularly perturbed case, a regular zone looks 
much more integrable than a regular zone in the regularly perturbed case. This 
difference in appearance arises because in regularly perturbed systems (i.e. those 
derived from a Hamiltonian H = H,(p, q) + SH,(p, q, t),  with scalar p and q land 
0 < 6 + 1) the regions in between any pair of invariant tori are generically O ( 8 )  in 
width. 

4.3. The layer S ;  and the transition regime to moderate F 
In this subsection, we discuss the orbits which lie in a layer, S; ,  just inside the boundary 
of the minimal backflow region, see figure 4(b) for example. The thickness of S;,  which 
cannot be obtained from the theories cited above, is exactly what we need in order to 
completely determine the size of the mixing zone for small E .  

S ;  has an annular shape. Its inner boundary is the outermost (or last) Arnol’d torus 
in the minimal backflow region, and on the outside it is adjacent to the potential mixing 
zone. Thus, as may be seen in the figures, it forms part of the actual mixing zone. We 
report the values for the thickness of S;,  as measured along the x-axis in the wide part 
of the gap between the shaft and the casing, obtained from our numerical simulations 
for various of the canonical cases in table 3. The data indicate that the width of S ;  
vanishes at least as fast as E when E + 0. 

While a general theory is not yet available to give the asymptotic scaling of S ;  for 
E +  0, Neishtadt, Chaikovshii & Chernikov (1991), have extended their work and that 
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of Cary et al. (1986), and shown for a model problem that the layer which corresponds 
to S ;  in this problem is O(e2)ln l/#) as e +  0. One can try to fit the data from one case 
( F  = 0.1, F =  0.3, (MP1) with various values of e for e < 0.14) - see table 3 - to this 
functional dependence on e; however, the fit is not good. This completes the discussion 
of the location and size of the mixing zone for small e. 

Because the minimal backflow region has a kidney-like shape and the layer S ;  is 
inside its boundary, there exists some critical value of e at which S ;  is as thick as the 
half-width of the backflow region. The plots and data show that the regularly 
appearing backflow region becomes smaller as e grows from being very small (less than 
O.l), looks like a tiny island for e 2: 0.13 (see Kaper 1991, Part 11, figure 2.4), and ceases 
to exist altogether for 6 2 0.14. Thus, this critical value is approximately e = 0.14 in the 
sample case. 

When e attains moderate values, the actual mixing zone is at least as big as the 
potential mixing zone. For 0.14 < e < 0.34, our numerical simulations show that the 
entire backflow region belongs to the mixing zone, see figure 4(a). Therefore, for 
moderate E, the actual mixing zone is the potential mixing zone plus the layer S ;  
around the outer periphery of the potential mixing zone. 

4.4. The optimal parameter choice 
When E attains moderate values, we have already seen in figure 4(a) that the actual 
mixing zone is at least as big as the potential mixing zone, because the entire backflow 
region belongs to the mixing zone. The conclusions made in the above discussion of the 
layer S ;  apply with suitable modifications to the layers, S ;  and S;,  around the inner 
and outer boundaries, respectively, of the potential mixing zone also, boundaries which 
are formed by the instantaneous stagnation streamlines ro and AR. The other 
boundaries of the layers S ;  and S ;  are the extremal Arnol’d tori of the families of tori 
adjacent to the casing and the shaft, respectively. Thus, for moderate e, the actual 
mixing zone is larger than the set (4.1). 

The theory and data therefore establish the claims we made about the sample case 
at the beginning of $4. By choosing a small value of the eccentricity, e<  0.1, by 
prescribing that Q(z) vary over a large negative interval such as the one in (MP2), and 
by using a moderate, but not too small, modulation frequency, we can obtain a mixing 
zone which is as large as possible for the counter-rotating eccentric journal bearing. 
From our steady-state measurements we saw how to optimize the potential mixing 
zone so that it occupies virtually the entire fluid domain, and from adding the 
considerations involving the parameter e, we have shown that the actual mixing zone 
is slightly bigger than the potential one with this optimal choice of parameters. 

When (MP2) is used, a similar dependence on e is found, although the lower bound 
on the range of ‘moderate’ E is smaller for (MP2) than it is for (MP1) in the same 
geometry, see Kaper (1991, of Part 11, figure 2.13). This is because the smallest value 
of e for which S ;  is wider than the minimal backflow region using (MP2) is less than 
that when using (MPl). The lower bound for (MP2) with the given values of eand F 
is less than 0.14. Also, the results for different e will be qualitatively similar to those 
we obtained for the sample case F = 0.1 and can be obtained with the methods used 
here. 

4.5. The fluid domains adjacent to the cylinders 
The fluid in the annular regions adjacent to the two cylinders evolves in an integrable 
way. Arnol’d’s extension of KAM theory cited in $4.2 applies to the orbits in these 
regions and states that they lie on tori which are exponentially close to each other. The 
boundaries of these regular regions adjacent to the cylinders are the outermost tori of 
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the family of tori which make up these zones, see figure 7(b). Thus, together with the 
mixing zone and the backflow region, these two regular zones account for the entire 
fluid domain. 

5. Transport analysis 
The homoclinic tangles and lobes in slowly modulated (singularly perturbed) 

systems are both qualitatively and quantitatively very different from those studied in 
weakly perturbed systems, i.e. systems to which the usual Melnikov theory applies and 
about which much has been written (see Wiggins 1992 and the literature cited there for 
examples). Chief among the differences is that the lobes are very long and thin - in 
particular what we will define as the turnstile lobes are of length O( l/e) and area O( 1) 
so that their average width is O(e) asymptotically as e+O, as we show in $96.2 and 6.3,  
and each successive image (both forward and backward) of a turnstile lobe is longer 
and thinner than the preceding image, while having the same area due to the area- 
preservation property of the PoincarC map. This stands in contrast with the usual 
(regular-perturbation) systems in which the lobe area is 0(6), where S is the amplitude 
of the small perturbation. As we see in our numerical simulations and in the 
experiments and numerical simulations with blinking protocols, tracer fluid appears to 
follow the unstable manifolds, see figure 5, deforming itself into a kind of fattened 
unstable manifold, i.e. a strip of tracer is thicker than the corresponding segment of the 
unstable manifold (at least for finite times). In the following sections, we show that for 
continuous modulation protocols these fattened regions are lobes. Thus, we refine the 
notions in the quasi-steady Stokes literature that transport occurs along unstable 
manifolds. 

In addition, the singular-perturbation nature of these modulated flows implies that 
lobe area is the inter-regional flux per half period, and as a result, the transport in these 
flows is more complicated than in the usual case in which transport is studied every full 
period only. The half-period analysis we present here was first announced in Kaper & 
Wiggins (1989) and represents the first fluid mechanical application of the methods 
developed in Elskens & Escande (1991) and Kaper & Wiggins (1991 a). 

The last difference we mention is that the turnstiles permeate the entire mixing zone, 
causing the tangle to function as its ‘backbone’, because the tangle sweeps out the 
entire O(1) separatrix-swept area. This is also in marked contrast with the usual, 
regular-perturbation case where the turnstile lobes only cover some O(6) fraction of the 
stochastic layer. This unique feature of adiabatic dynamical systems guarantees that 
large-scale mixing occurs within the first few periods of the modulation. 

5.1. Structures in adiabatic dynamical systems 
The saddle stagnation point of the steady flow with z = zo persists as the saddle 
stagnation point XE(zo) of the Poincare map T,,, i.e. as a periodic trajectory of the flow, 
see figure 6 in which z ,  = 0. Wiggins (1988a, b) contain expositions of the theory 
specific to adiabatic dynamical systems. Since Xe(zo) lies near Xo(zo), one can construct 
an asymptotic expansion in powers of e for its position as a function of z, see Kaper 
(1991, Part 11, Appendix B). The leading-order term is Xo(zo), and the first correction 
term is O(E) in the y-component and O(e2) in the x-component. Furthermore, 
from symmetry considerations, X,(z,) lies on the x-axis for zo = Omod2x and for 
zo = x mod 27c. 

If one were to watch the experiment continuously as z increases from zo to zo+27c, 
instead of sampling it stroboscopically with the Poincart map, one would see that the 
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FIGURE 5. Piece of the unstable manifold P(X,(O)) for the flow with 

c: = 2x140, (MPl), e = 0.1, and r = 0.3. 
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FIGURE 6. The orbit y,(z) for various e with i? = 0.1, F = 0.3 and (MPI). The instantaneous stagnation 
point executes clockwise motion along the indicated curves. The curve with the largest maximum 
vertical coordinate is for E = 2x120, and in descending order, the others are for E = 2 ~ 1 3 0 ,  2x140, 
2x/60, 2x1 120, respectively. 

saddle executes a periodic orbit y,(z). Figure 6 illustrates the orbit ye(.) for various 
values of e. This closed path lies in the fluid domain inside a strip of width O(e) around 
the segment [Xo(zo = n), Xo(zo = O)] on the x-axis in the narrow gap between the shaft 
and the casing in the mixing zone. 
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FIGURE 7. i? = 0.1, F = 0.3, E = 2n/40, and (MPI). (u) Segments of the stable and unstable manifold, 
the pips h, for i = - 1,0,1. h, and h-, are exponentially close (in e) to X,. (b)  The regions Rl-R3, for 
z = 0 in the top picture and for z = n in the bottom frame. AT denotes the extremal Arnol'd torus. 
The annular regions between the cylinders and these extremal tori (i.e. complementary to RI-R3) are 
regular zones filled with tori exponentially close to each other. (c) A schematic of the homoclinic 
tangle formed by Au and As.  

Introduction of the time modulation breaks the coincidental stable and unstable 
manifolds (stagnation streamlines) A"0 and P o  and causes them to intersect transversely. 
There exist four infinitely long distinguished manifolds which intersect in two 
intertwined homolinic tangles, see figure 7. These manifolds may be seen experimentally 
as the streaklines one obtains by injecting tracer dye at a point on the instantaneous 
unstable eigenspace extremely close to the slowly moving saddle point. Two of the 
manifolds consist of all of the points in the fluid domain which are forward (n + + co, 
where n is the discrete time of the PoincarC map) asymptotic to Xe(z,). We label these 
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l-'s(X,(z,)) and As(X,(z,)) because they are the stable manifolds of X,(z,) and remnants 
of the branches of the stable manifolds of X,(z,) which coincide with Fo and Azo, 
respectively. The other two, P(X,(z , ) )  and A"(X,(z,)), consist of points that are 
backward (n + - 00)  asymptotic in time to X,(z,). They are the unstable manifolds of 
X,(z,). Although one only observes the unstable manifolds in experiments, one 
can obtain the stable manifolds from symmetry considerations for special zo (z,  = 0, 
nmod2n for (MP1) and (MP2)) and in general by performing a second experiment 
in which the direction of rotation of the two cylinders is reversed. 

The point h,, where P(X,(z , ) )  and P(X,(z,))  intersect, and the point k,, where 
Au(X,(zo)) and A"(X,(z,)) intersect, may be chosen arbitrarily, see figure 7. For 
convenience, we choose them to be the intersection points lying on the x-axis. We label 
the segment of Tu(X,(z,)) between X,(z,) and h, by u[X,(zo), h,] and that of P(X,(z,)) 
between X,(z,) and h, by S[X,(z,), h,]. Similarly, u[X,(z,), k,] denotes the segment 
of T"(X,(z,)) between X,(z,) and k,, and S[X,(z,), k,] denotes that of P(X,(z,)) 
between X,(z,) and k,. Here, h, and k ,  are primary homoclinic points p in the sense that 
u[X,(z,),p] and S[X,(z,),p] intersect only in the point p .  For a review of intersections 
in heteroclinic tangles see Rom-Kedar & Wiggins (1990). 

With the choice of zo = Omod2n, the symmetry of the PoincarC map 

n+-n, x - t x ,  y - f - y  
is such that the unions 

4 , z  = u[X€(ZO)' hol u S[X,(Z,), hol, 1 
(5.1) 

naturally divide the mixing zone into three regions in the time-periodic flow, see figure 
7(b). Region 1 (Rl) is the annular domain bounded on the inside by the outermost 
Arnol'd torus of the family of tori which make up the regular zone adjacent to the shaft 
and on the outside by Bl ,  2. The kidney-shaped domain in the middle of the mixing zone 
bounded on the outside by Bl,2 and B2,3 is region 2 (R2). To completely define it, 
however, we recall from the previous section that there are two possibilities. Either E 

is large enough such that the entire domain between Bl,  and Bz, is part of the actual 
mixing zone, e.g. E 2 0.14 in the case when F =  0.1, F= 0.3, and one uses (MP2), or 8 
is small and there exists a regular region occupying part of the minimal backflow 
region. In the former case, the entire kidney-shaped domain is R2, and in the latter 
case, R2 is an annular domain and the inner boundary is the outermost Arnol'd torus 
in the family of tori which make up the regular zone. 

Finally, region 3 (R3) is also an annular domain bounded on the inside by B2,3 and 
on the outside by the smallest Arnol'd torus in the family of tori in the regular zone 
adjacent to the casing. Thus, the boundaries Bl,2 and B2,3 act as the dividing curve 
between the three regions. Of course, one can identify three regions and their natural 
boundaries for every value of zo in [0,2n), but for simplicity, we focus only on two 
choices of z,: zo = 0,n. 

In contrast to the situation in the steady state, transport between the three regions 
is possible in the modulated flow. Before showing how the structures we have just 
identified form a template from which we can determine stretching and transport 
quantities, we introduce one final concept, that of a turnstile lobe, see figure 8. 

Invariance of the manifolds implies that homoclinic points are mapped to homoclinic 
points under Tz, and its inverse T;'. In particular, primary homoclinic points (pips) are 
mapped to pips, see Rom-Kedar & Wiggins (1990), and thus the streaklines P'(X,(z,)) 
and T"(X,(z,)) intersect each other infinitely many times as X,(z,) is approached from 
both sides along the stable manifolds, forming a homoclinic tangle, as do the 

B2,3 = u[~,(z,), k,I U S[X,(z,), k,I J 
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FIGURE 8. The turnstile lobes when &?= 0.1, F =  0.3, B = 2n/40, and (MP1) is used. (a) The turnstile 
lobe L2,1(l) of the r-tangle. The 'tip' of the lobe is in the upper right quadrant of the domain, and 
the 'base' point is the midpoint of the segment of P ( X J  between h-, and h,. (b) A schematic of (a). 
( c )  The turnstile lobe L3,2(1) of the A-tangle. (d )  The intersection of LJl) and L2,1(l) is shaded. 

streaklines A"(X,(z,)) and A "(X,(z,)). The segments of T"(X,(z,)) and rU(X,(z,)), which 
we label ah,, hi+1] and U[hi, hi+,], between any two adjacent pips hi and hi+,, where i is 
an integer, bound an area on the Poincark section which is called a lobe. Similarly, 
the segments S[ki, ki+J and U[ki, k,+J of A"(X,(z,)) and A"(X,(z,>) form a lobe. Now, 
because the system is Hamiltonian, and because lobe boundaries are invariant under 
the PoincarC map, To is an area-preserving diffeomorphism of the fluid domain to itself. 
Thus, one can show that all of the lobes of a given tangle, i.e. of the r-tangle or of the 
A-tangle, have the same area. 

The lobes which are defined by the segments between h-, and h, and those between 
h-, and k1, as well as the corresponding ones between k-,  and k, and between k-, and 
k-, of the A-tangle, play a special role in the stretching and transport of fluid. We refer 
to them as turnstile lobes. 
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5.2. Transport in half-period intervals 
The geometrical mechanisms convecting particles from one region to another are the 
turnstile lobes. As we stated in the previous subsection both the r- and the A-tangles 
have a pair of turnstile lobes. In this and the next section, we prove that the pair of 
lobes L,,,(l), defined by h-, and h-,, and Lz,l(l), defined by h-, and h,, respectively 
govern the transport out of and into R1, and the pair of lobes L,,Jl) and L3,2(l), 
defined by the pairs k-, with k-, and k-, with k,, respectively govern the transport into 
and out of R3. The subscripts on the lobe L refer to the regions. 

During the first half of the modulation period, the areas of R1 and R2 increase, while 
that of R3 decreases. For example, as we see from figure 3 and table 1, the area 
enclosed by the instantaneous Tz increases as rz sweeps outward away from the shaft 
for z increasing from 0 to n. Only those tracer particles which are in lobe Lz, ,(I) (which 
is a subset of R2 and R3) at time z = Omod2n and enter into R1 in one half-period. 
Similarly, only those particles which are in lobe L3, 2( 1) (which is a subset of R3) at time 
z = 0 mod 2n will be in R2 and R1 at time z = n mod 2n. 

An analogous result is true for the remainder of the modulation period. During the 
second half of the period, the above is reversed, because the areas of R1 and R2 
decrease, while that of R3 increases. The area enclosed by the instantaneous rz 
decreases. 

The mechanisms by which fluid exits these regions are turnstile lobes. In particular, 
only those tracer particles which are in lobe L,,2(l) (which is a subset of R1) at time 
z = nmod2n enter into R2 and R3 during the second half of the modulation period 
and lie entirely in those regions at time z = Omod2n. Similarly, only those particles 
which are in lobe L,, 3( 1) (which is a subset of R2 and R1) at time z = n mod 2n will lie 
completely in R3 at time z = Omod2n. 

To illustrate the above statements, we examine the case in which Z = 0.1, F =  0.3, 
e = 2n/40, and (MP1) is used, see figure 9. We cover the lobe L2, ,(1) in R2 (and partially 
in R3) with a uniform grid of points (spacing = 0.006) at time z = 0, as shown in figure 
9(a). We when show in figure 9(b) that the tracer lies inside R1, exactly in the spiral- 
shaped turnstile lobe T i  L2,,(1), at time z = n. In Kaper (1991, figures 2 . 1 8 ~  and d ) ,  the 
shaded region is blown up so that the boundaries of the thin, lamellar striations are 
clearly visible. Particles only lie in the lobes. 

Furthermore, two cases are possible, one in which L2,1(l) n ~ 5 ~ , ~ ( 1 )  $= 0, as shown in 
figure 8 (d) ,  and the other in which L,, ,( 1) n L3, ,( 1) = 0. However, for c < 0.3 in all of 
the cases we analysed the former holds true. This explains why we said above that 
L2, ,(1) is a subset of R2 and R3. The results we present in the remainder of this paper 
apply in both cases; one need only be slightly careful about justifying the formulae we 
use in the former case, as we show in the next section. 

5.3. Transport in intervals of unit periods 
In this section, we look at the inter-regional transport process from the usual, per-unit- 
period point of view and obtain results giving the probability that an orbit initially in 
one region can be found in another region after any period of the modulation. Rather 
than treat this problem in its full generality immediately, however, we first consider the 
particular problem of what fraction of tracer initially in R3 gets transported to R1 in 
each period of the modulation. 

One may then compute the other eight quantities TJn)  for i, j = 1,2,3, which, 
assuming that region i is initially filled with tracer fluid, represent the amount of tracer 
initially in region i that is in region j exactly at the end of the nth period. These can be 
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FIGURE 9. Transport in half-period intervals via the turnstile mechanism in the case &? = 0.1, F = 0.3, 
E = 27c/40, and (MP1). (a) All tracer particles at z = 0 lie in lobe Lz,l(l), which is shaded. (b) At 
z = IT, all tracer particles lie in Z$,(Lz,l(l)) R2, the half-period image of the lobe &(I). Enlargement 
of (b)  shows that all of the particles lie inside the half-period image of the lobe, which has a solid 
boundary. (c) Schematic of (b). 

used to give the probabilities, using the same procedure as we do here for T,,,(n) and 
the conservation equations. These equations, five in all for the nine independent 
quantities &(n) for i,j = 1,2,3, express the conservation of tracer and the conservation 
of the areas p(&) for i = 1,2,3 : 

3 I C (T,,(n)- T,,(n- 1)) = 0, i = 1,2,3, 
3=1 

I C (T&)- K,3(n-  1)) = 0, j = I ,  2,3. 
i= l  

The solution to this problem represents the probability that an orbit, initially 
rotating in the same sense as the casing, changes flow direction as a function of the 
modulation period. To define the problem precisely, we assume that the tracer is 
uniformly concentrated in R3 initially, i.e. at the slow time z = 0. The question we 
answer, then, is: how much tracer is in R1 at time z = 2nn for n = 1,2,. . .? We label 
this quantity as G,l(n). 

Before proceeding, we must redefine the turnstile lobes to eliminate the intra- 
turnstile overlap areas Ll, z( 1) n L2, 1) and L2, 3( 1) n L3, 2( 1). The two lobes forming a 
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turnstile always intersect in adiabatic dynamical systems, due to the lobe area theorem 
given in Kaper & Wiggins (1991 a). In particular, we set 

(5.3) I L1,,(l) = ~ ~ , ~ ( 1 ) n a  
L2,1(1) = ~~,,(1)-~,,,(1)n~~,~(i), 
L2,3(1) = L,, 3t 1) n ( ~ 2  u R I), 
k 2 ( 1 )  = 

The excluded parts of the original turnstile lobes, although they get mapped across the 
inter-regional boundaries during the first half of the modulation period, get mapped 
back across before the end of the period to the region they were in at the beginning of 
the period. For example, during every period the fluid in L2, 1) n Ll, 2( 1) gets mapped 
from R2 into R1 and back again. Therefore, the orbits in these overlapping regions 
change their orbit type (i.e. rotate in the same sense as the shaft or the casing, or are 
in the instantaneous backflow region) an even number of times in each period, and the 
parts in the redefined lobes do so an odd number of times. 

Now, the fact that rS cannot self-intersect implies that Ll, 2( 1) must lie in L2, 1( 1) and 
R1, because as soon as it crosses rU between X,(z,) and h, it does so at the pip which 
defines the boundary of L1,,(l). Thus, the overlap region is large. In fact the turnstile 
lobes overlap completely in the limit of e+O, as we will see in the next section. 

In addition, exclusion of the intra-turnstile overlap, which may be characterized by 
saying that we exclude, for example, from L2,,(1) the (large) piece of the lobe L1,,(l) 
'nested' inside L2,1(l), isolates the long thin folded structure of L2,1(1) that gets 
transported into Rl at the end of each cycle. We now show that it is responsible for 
continuing the stretching and folding of the lamellar tracer structure discussed in the 
previous section as z increases from z = 7c to z = 27c and in each subsequent period. 

L?, ,( 1) directly transports an amount of fluid equal to ,LA@,, 1( 1) n L3, 2( 1)) from 
R3 into R1 during each period, where p(L) denotes the area of the planar set L. 
In fact, only the tracer contained in the intersections of L2,1(l) with T,"-"&,(l), for 
k = 1,2,. . . , n- 1, n, can enter R l  at the nth iteration. 

However, the intersection i,, 1( 1) n L3, 2( 1) is only uniformly filled with tracer fluid 
initially. At later times, the concentration of tracer is not uniform. Furthermore, 
although the fluid in this and the other intersections is exactly what we need, not all 
of it is tracer fluid. Thus, the problem requires us not only to identify the flux 
mechanism, as we have done so far, but also to find a way to determine the content of 
the lobes. 

Having redefined the turnstile lobes, the transport theory presented in Rom-Kedar 
& Wiggins (1990) directly determines the lobe content. The two main quantities needed 
are the amount of tracer which is in the lobes E2, ,(n) and El, 2(n), which we denote by 
L":, l(n) and ,f:: ,(n) following the notation of Rom-Kedar & Wiggins (1990), where the 
superscript 3 indicates that we are following the tracer which was initially uniformly 
distributed in R3. For n > 1, we find 

I AL;,,(~)) = , L A ( ~ 2 , 1 ( ~ ) n ~ 3 , 2 ~ 1 ~ )  

+ Y w : - n  L, ,(1) n ~ ~ , ~ ( 0 )  -,G-?~Z~, ,(1) n ~2,3(1))1, 
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At first glance it may seem that, in addition to redefining the turnstile lobes as we did 
above, we also must modify the transport theory, because of the fact that part of 
L,,l(l) lies in R3 and part of L2,,(1) lies in R1. However, the above formulae are 
exactly the necessary ones because the intersections with L,, ,( 1) and L2, ,(1) are 
accounted for from the first period onward. 

Next, the change in the amount of tracer in R1 at the nth cycle is 

Using (5.4), we evaluate the right-hand side. Finally, we write a (telescopically 
collapsing) sum using the above difference formula to obtain T,,,(n) strictly as a 
function of &, ,(O) and the lobe content expressions (5.4) : 

Since by assumption all of the tracer is in R3 initially, T,,,(O) is identically zero, and 
(5.6) reduces to 

(5.7) 
m-1 

5.4. Exponential stretching of material interfaces and lobes 
In this section we use the notion of Birkhoff signatures to analytically obtain 
exponentially growing lower bounds on the stretching rates for both interfaces and 
lobes. In addition, we show theoretically that the rate at which a patch of tracer fluid 
is stretched asymptotes to some constant rate after the first several periods. The 
numerical data we collected from simulations 0(105) points in typical case agree with 
our analytical expressions and are reported in 56. The actual stretching rates predicted 
by our theory for patches in continuously modulated flows appear to be similar to 
those reported in Muzzio et al. (1991) for blinking flows. 

Relying on the invariance of the stable and unstable manifolds, Birkhoff signatures 
represent a compact way to encode the relevant data about the homoclinic tangles in 
quasi-steady Stokes flows. We begin by illustrating schematically in figure 10, using a 
simple example, how the unstable manifold winds around the stable manifold, forming 
a homoclinic tangle, as the fixed point, X,, of the PoincarC map is approached. The 
segments between the principal intersection points h, and h, constitute the fundamental 
pattern, or 'basic signature', which gets repeated at every iteration of the Poincarb map 
in the following sense. As we stated in 55.1, pips get mapped to pips. In particular, 
T, hi = hi+, for all integers i. As we saw in the previous section, the segments of the 
stable and unstable manifolds between pip's are mapped to the appropriate segments 
between the forward images of the pip's under the action of the Poincark map in such 
a way that the relative ordering of initial conditions stays the same, due to uniqueness 
of solutions. Therefore, from the basic signature we can obtain a sequence of signatures 
which schematically (and topologically) encode the entire tangle. 

In this example, as we go from h, to h, along Wu(X,(z,)), U[h,,h,] arches back 
toward h, and intersects S[h,, h,] in two secondary homoclinic points, s1 and s,. Because 
s1 and s, lie on S[h,, h,], we know that s, 5 qsl and s, = T, s2 are on the segment 
S[h,, h,] and that q h , ,  h,] intersects S[h,, h,] in those two points. Therefore, q h , ,  h,] 
must wind around qh,,h,] as sketched in figure 10 because the unstable manifold 
cannot self-intersect. Following Abraham & Shaw (1989, we refer to the segments of 
W"(X,(z,)) and W"(X,(z,)) between h, and h, as the second signature. This fundamental 
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FIGURE 
W 

10. Basic and second Birkhoff signatures for the simple example of $5.4. 

process, i.e. U[hzi+,, h,i+,] intersecting S[h,,, /z,~+,] and winding back to h, around the 
previous segments of the unstable manifold (creating higher-order homoclinic points), 
repeats itself for every i 3 1 .  Furthermore, in this process, the interface is stretched by 
a factor of at least twice the length of wh,, h,] each iteration because the pieces of the 
segments which wind back are at least as long as the ‘finger’ of U[hl, h,] arching back, 
Thus, denoting the length of a segment q h , ,  h,,,] by I( U(h,, h,,,]), we have 

4U[hzi+u h,i+Zl) ’ 2 i w t h l ,  h21L (5.8) 
for all integers i, where this lower bound is conservative, but rigorous. 

Using the concepts illustrated on this simple example, we analyse a typical case. For 
the parameters C =  0.1, r=  0.3, e = 2n/40, and (MPl), we focus on the tangle formed 
by A”(X,(z,)) and A”(X,(z,)). The basic signature for this tangle shows that V h , ,  h,] 
and S[h,,h,] intersect in many more (eighteen, in this case) secondary homoclinic 
points. Thus, the long length of these segments gets stretched exponentially in time by 
the above inequality. This also implies that the length of a lobe (a quantity defined 
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FIGURE 11. Plots of the natural logarithm of the length of the unstable manifold (vertical axis) as a 
function of the modulation period n (horizontal axis) for two typical cases. In both F = 0.1, P = 0.3, 
and (MPl) were used, and the squares correspond to the case of E = 2n/20 and the pluses to E = 
2n/30. The slopes are very near the stretch rate predicted by the Birkhoff signature analysis, which 
is the line with slope In 2. These arclength measurements were made numerically and corroborated 
using a map wheel. 

carefully in the next section) grows exponentially in time. In figure 11, we graph the 
exponential rate of stretching of the manifold as a function of the modulation period 
for two typical cases. 

6. Analytical estimates from adiabatic dynamical systems theory 
6.1. Adiabatic Melnikov theory 

The first tool we need is the adiabatic Melnikov function, MA(z), see Neishtadt (1975), 
Robinson (1983), Palmer (1986), Wiggins (1988a-c), or Kaper & Wiggins (1991a). It 
is the coefficient of the leading-order term in an asymptotic series for the distance 
between the stable and unstable manifolds forming a ' same pair' tangle as measured 
along the normal to the instantaneous stagnation streamlines : 

where (x;((t), yi((t)) is an orbit parametrizing the instantaneous stagnation streamline for 
which the function is being evaluated, either I'" or A". If this integral is evaluated along 
a homoclinic orbit on I", we denote the adiabatic Melnikov function by M;(z), and 
it measures the distance between I's and T". Similarly, we write M i @ )  when the 
function is evaluated along an orbit on Az.  
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A simple zero of M;(z) implies that, for E sufficiently small, Ts and ru intersect each 
other transversely; likewise for M ~ ( z )  and the manifolds As and Au. Furthermore, for 
periodic and quasi-periodic systems, one intersection of the manifolds implies that 
there are infinitely many others, because, as we stated in the previous section, 
invariance of the manifolds implies that a point on both manifolds must always be on 
both manifolds. 

The theory presented in Kaper & Wiggins (1991 a) shows that M;(z) = (dAr/dz) (z, 
z,), where Ar is the difference between the areas enclosed by the instantaneous 
separatrices r" and T"0 and z, is the zero of M;(z) corresponding to the nearest 
intersection and extremal instantaneous separatrix. A similar result holds for M$(z). 
Therefore, since dA/dz changes sign at the extremal values of z,  we know that both 
M;(z) and M;(z) have periodically spaced simple zeros for our modulation protocols 
at z = 0, nmod2n, and hence the intersecting stagnation streaklines form two 
homoclinic tangles as shown in the figures of the previous section. Alternatively, (6.1) 
may be rewritten in a computationally more convenient manner, as is shown in Kaper 
& Wiggins (1991a), as 

M;(z) = l-, 
Using this form, one can also see that the adiabatic Melnikov functions for both 
separatrices have simple zeros at z = 0, nmod2n, because the derivative on @ only 
contains terms proportional to sin z and hence vanishes there. Thus, we have rigorously 
established the existence of the intersections of the manifolds we obtained numerically 
in the previous section. 

Furthermore, the theory of the adiabatic Melnikov function enables us to show that 
all of the pips hi and k,, for all integers i, except i = 0, lie in a small neighbourhood 4, 
whose size depends on E ,  of X,(z) on the PoincarC section. Since the z-distance between 
adjacent zeros of both M;(z) and Mf(z )  is equal to n, we know that in the fast time 
t, two adjacent pips are separated from each other by a time of flight of At = n/e along 
rz and A', respectively. Thus, on the Poincare section with z = 0, all of the pips hi and 
k,, except h, and k, which lie near the respective reference points on rz and A", lie 
exponentially close in time to X,(z) and, hence, in 4. This, in turn, implies that the 
tangles are as shown in the figures from the previous section and that they are very 
difficult to obtain accurately numerically. Even for values of E as large as e = 2n/20, 
the time of flight is large enough so that all of the pips but h, and k, lie in 4. Also, 
the manifolds are making room for the growing regular zone, which is made up of an 
increasingly larger number of persistent Arnol'd tori as E+O,  in the instantaneous 
backflow region. 

6.2. Lobe area 
The lobe area formula established in Kaper & Wiggins (1991 a, b) states that the area 
of a lobe is given to leading order by the difference between the areas enclosed by the 
maximum and minimum instantaneous stagnation streamlines that occur during the 
modulation period. Thus, to leading order the area is an O( 1) quantity as E + 0, which 
is strikingly different from the regular perturbation case in which the leading-order 
term is O(8) asymptotically. Furthermore, in Kaper & Wiggins (1991 b), we have shown 
that the remaining terms in the asymptotic expansion are O(e). 

The data required to determine the O( 1) contributions to the lobe areas for our flows 
may be read from the tables given in 92. To be precise, the leading-order term in the 
asymptotic expansion for the area of L2, 1) and all of the other lobes in the r-tangle 
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E Length Average width 
2x130 3.93 0.15 

2x150 8.31 0.079 
2x160 11.06 0.061 

TABLE 4. Lobe length and average width for the turnstile lobe L21(l) as a function of B. (MPl) is 
used, F =  0.1, and r =  0.3. 

2x140 5.65 0.1 1 

(i.e. the tangle formed by the transverse intersections of rS and r") is the difference 
between the maximum and minimum areas of region A attained during the given 
protocol, see table 1. Similarly, the leading-order term in the asymptotic expansion for 
the area of L3,2( l )  and all of the other lobes in the A-tangle is the difference between 
the maximum and minimum areas of region C attained during the given protocol, see 
table 1. 

Finally, the integral of MA(z)  between two of its adjacent simple zeros gives the same 
result as the leading-order term for the lobe area, see Kaper & Wiggins (1991 a). We 
have used this property to verify the correctness of our computations. For all of the 
geometries and protocols we simulated, the lobe-area results scale according to the 
theory. 

6.3. Length of turnstile lobes 
Given that we know the lobe area, we now determine the shape of the first turnstile 
lobes and then those of all of their images. Independently of our lobe-area result, but 
essential in their own derivation of that result, Elskens & Escande (1991) stated a result 
for the lengths of turnstile lobes which, in the context of our flows, implies that the 
lengths of the two turnstile lobes L2,1(l) and L3J1) are O(l/e) as c+O to leading 
order. Here, we measure the length from the midpoint of the base segment, u[X,(z), 
h,,] and qX,(z),k,,], respectively, of the lobe to its 'tip', see figure S(a). Our 
measurement is the number (including the fractional part) of times the lobe spirals 
around in the fluid domain multiplied by the average length of one spiral. As may be 
seen by uncoiling the lobe, our measurement constitutes the analogue of Elskens & 
Escande's measurement of lobe length using the distance from the base to the tip of the 
lobe along the q-axis in the pendulum. The asymptotic scaling depends on c, and the 
coefficients in the expansion depend on e and the choice of protocol through AD. 

Since our O(1) lobe-area result given in the previous subsection is independent of this 
length calculation, we know that the average width of the lobe is O(e), as measured 
along the normal to the segments of rs and As that define it. We report the lengths and 
average widths of the lobes Lz, 1) and L3, 2( 1) for different cases in table 4. We find that 
the asymptotic scaling is as predicted in the theory. Furthermore, the data from our 
numerical simulations show that these formulae are fairly accurate for a wide range of 
small c, up to e = 0.34 in all cases. 

6.4. Average striation thickness 
Quantitatively, adiabatic dynamical systems theory predicts that a patch of tracer fluid 
gets stretched by a factor of O( l/e) in each period of the modulation. Also, in 0 5.4, we 
have shown that the unstable manifold forming the boundary of the lobes grows 
exponentially in length. Thus, we may estimate that the average striation thickness, 
which is approximately the average width of the lobes, decreases with time as follows : 

dstriation(z = 2nn +z,,; t = 2nn/c) = 0 ( e / 2 % )  (6.3) 
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6 

2x 120 
2x120 
2nj20 
2x120 
2x120 
2x 120 
2x130 
2x130 
2x130 

Period 'stria,tim 

1 2.1 x 10-3 
2 7.1 x 10-4 
3 3.5 x 10-4 
4 1.5 x 10-4 
5 6.3 x 
6 2.7 x 
1 1.2 x 
2 3.9 x 10-4 
3 8.0 x 10-5 

No. folds 

2322  
72+7 

1802 15 

4 

- 

- 

16 
63f3  

16827 
TABLE 5. Average width of tracer patch and number of folds in the patch as a function of E and the 
modulation period. Folds are defined as bends in the patch with an angle of more than 90". Data for 
the fifth and sixth periods are not reported because of the difficulty in finding their number using 
simulations with 20000 points. (MP1) is used, e =  0.1, and r =  0.3. 

for integer n. Table 5 contains the data for the average striation thickness and the 
number of folds as a function of the modulation period from various simulations. 

The evolution of an arbitrary patch of tracer fluid in the mixing zone is determined 
completely by the evolution of the set of lobes it is in. Any part of the patch in a 
turnstile lobe gets stretched, folded, and 'thinned' by the same amount as the lobe. The 
same applies to those parts of the patch which are in other lobes, outside of the turnstile 
lobes. 

7. Analytical determination of island location and size 
Islands are invariant regions in which fluid particles advect in a regular (integrable) 

sense. They obstruct transport since fluid cannot leave or enter them. In this section, 
we apply new results to obtain information about the location and size of islands. As 
an example to illustrate the further control we have over the flow domain using our 
modulation protocols, we show how one can choose the frequency of modulation so 
that one minimizes the area in the mixing zone occupied by islands and hence 
maximizes the area in which exponential stretching occurs. Islands are distinct from 
regular zones, even though they look exactly like regular zones, since they are made up 
of tori created around elliptic periodic points. However, islands surround elliptic points 
which are created in global bifurcations as resonant responses to the time-periodic 
modulation. They are not made up of tori which persist from the steady-state flow. 
Thus they are different from the tori which make up regular zones. The results of Kaper 
(1991, Part I) and those of Elskens & Escande (1991) show that these islands are no 
bigger than O(e). All of the numerical simulations we performed with E < 0.2 are 
consistent with these results. 

From a typical plot, see figure 12, of the periods of the steady-state orbits versus the 
point at which they intersect the x-axis in the wide part of the annular gap in the 
bearing, one sees that the period diverges logarithmically to infinity as the stagnation 
streamlines r" and Az are approached. The orbital frequency is given by 27t divided by 
the period, so it vanishes logarithmically near the separatrices. Finally, the modulation 
frequency satisfies 0 c e + 1 .  As a consequence, the orbits which resonate with the 
modulation, i.e. those whose natural frequency is some rational multiple of E ,  spend 
most of the modulation period very close to the slowly moving saddle stagnation 
points, and only near distinguished values of the slow time (z = 0,n mod 27c) do they 
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FIGURE 12. The period (in radians on the vertical axis) of the steady-state periodic orbits versus the 
position (x) of the orbit along the wide gap between the shaft and the casing. i? = 0.1, r =  0.3, Q, = 
1.0; in (a) 52, = -2 and in (b) Q, = - 10. The inner and outer cylinders are at x = 6.765 and x = 
7.535, respectively. The period goes to infinity logarithmically as I' and A are approached. 

make excursions away from it near the instantaneous stagnation streamlines. Matched 
asymptotic expansions can be constructed for the resonant subharmonics. 

Finally, the islands are created in global bifurcations. In the case of C? = 0.1, r = 0.3, 
(MPl), there is a global bifurcation between e = 27c/20 and B = 2n/30 in which the 
intersection point h, of the manifolds rs and Tu is created. This event is correlated with 
the fact that just below e = 27c/20, the period of the modulation (period = 20 in the 
units in figure 12) first exceeds the minimum period of orbits in the backflow region; 
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FIGURE 13. Actual mixing zone for (a) C =  0.1, F =  0.3, e = 2n/20, with (MP1); and (b) F =  0.5, r=  

0.3, e = 2n/60, with (MPl). In both cases, one initial condition is integrated for 20000 periods. 

recall that 0, = - 2 at z = 0 mod 2n. Now, for this same case, we first see the (small) 
2 : 1 island when e reaches 2n/20, see figure 13 (a). 

Also, these results are asymptotic. For example the 1 : 1 island in the case for which 
F = 0.5 and (MP1) are used is big for E as small as 2n/60, see figure 13 (b). Again, there 
is a global bifurcation below this value of E in which, as e decreases, a new homoclinic 
point is created. 

8. Chaotic fluid particle motion 
Although chaos is not the primary focus of our study we state briefly in what sense 

these slowly modulated counter-rotating flows exhibit chaotic dynamics. Since the flow 
in the counter-rotating eccentric journal bearing subject to the modulation protocols 
(MP1) and (MP2) has two intertwined homoclinic tangles, the Smale-Birkhoff 
Homoclinic Theorem directly implies that horseshoes exist. Among the possible 
horseshoe constructions, the main two are the 'same pair' horseshoes created by each 
of the tangles individually, i.e. Ts(X,(z,)) with P(X,(z , ) )  or LIs(X,(z,)) with A"(X,(z,)), 
and the 'mixed pair' horseshoes formed by the transverse intersections of 'mixed pairs' 
of manifolds, i.e. Ts(X,(z,)) with AU(X,(z,)) or A"(X,(z,)) with P(X,(z,)) .  Also, the 
theory of adiabatic dynamical systems, see Kaper & Wiggins (1 99 1 c), implies that these 
flows possess the basic stretching and folding required so that the horseshoe 
construction can occur in one iteration of the Poincart map, just as 'whorl-tendril' 
flows do (see Ottino 1989). 

9. Robustness of the model 
9.1. Incorporation of inertial egects 

In our model, we assume that the flow is determined exactly by the solution of the 
Stokes equations. Incorporation of inertial effects does not alter either the essential 
features of the streamline pattern from those of our model or the leading-order results 
obtained from the analysis presented in previous sections. 

The essential features of the steady counter-rotating flow are the saddle stagnation 
point, the two streamlines which stagnate on it, and the three families of periodic 
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streamlines bounded by them. For 0 < Re + 1, the position of the saddle and the two 
stagnation streamlines changes by an amount of O(Re) from that which we used in the 
Stokes model. The expansion for the position of the saddle taking into account the 
first-order inertial terms performed in Ballal & Rivlin (1976) shows that the y-  
component of its position changes by an @Re) amount whereas the x-component is 
unaltered from that of X 2 .  Furthermore, the saddle is still connected to itself by two 
stagnation streamlines (slightly tilted from the position of P o  and A',) which are level 
curves of the enhanced stream function, i.e. the stream function obtained when the first 
correction terms for inertia are included, see Ballal & Rivlin (1976, figure 26). 

Robustness of the streamline pattern is one of the main reasons we chose the 
counter-rotating case. The flow in the corotating case is more delicate. If fi > a,,it > 0, 
there exist two saddle stagnation points in the corotating case connected to each 
other by four stagnation streamlines (heteroclinic orbits), see Ballal & Rivlin (1976, 
figure 14). Although addition of the inertial effects only changes the locations of these 
two saddle points by an amount of O(Re) ('just as in the counter-rotating case), the 
topography of the level curves of the full stream function is changed. See, Ballal & 
Rivlin (1976, figure 22) for comparison. In particular, the value of the enhanced stream 
function is no longer the same at the two stagnation points so that they cannot be 
connected to each other as they are in the Re = 0 limit. Instead of having four 
heteroclinic orbits, one has two homoclinic orbits, one to each saddle. Thus, although 
the time-periodic modulation will make the corotating flow exhibit good mixing 
because the two homoclinic orbits break and sweep out a large area, one cannot apply 
the results from the Re = 0 model to the full flow and one needs to perform a detailed 
analysis based on the enhanced stream function instead. 

However, since there are two slowly moving saddle points when 0 > a,,it which 
stretch material elements in the corotating case, as opposed to only one in the counter- 
rotating case, mixing may be more efficient. 

Finally, when one of the cylinders remains stationary, the position of the stagnation 
point on the stationary cylinder depends only on the eccentricity of the bearing and is 
independent of the angular velocity of the spinning cylinder, at least at the level of the 
Stokes approximation (see Ballal & Rivlin 1976). Since the inertial corrections are 
O(Re), the maximum area that the stagnation streamlines could sweep out and, hence, 
the maximal area available for mixing in the context of continuous modulation 
protocols, is much smaller than it can be in the counter-rotating or corotating cases. 

9.2. Application to other mixing problems 
The techniques that we have presented may be applied to a large class of quasi-steady 
Stokes flows with features commonly found in adiabatic dynamical systems. 

Large-scale chaos exists in the blinking two-roll mill, see for example Ng (1989) and 
Ng, James & Leal (1990). In this device, there are two cylinders external to each other 
in a box. Using modulation protocols such as those in 93, the angular velocities of the 
two cylinders are functions of the slow time z .  An interesting case is when the saddle 
stagnation point moves slowly back and forth along the gap between the two cylinders, 
see Kaper & Wiggins (1989). Large O(1) chaotic regions are created just as they are in 
the eccentric journal bearing flow because the saddle and its stable and unstable 
manifolds sweep out O( 1) distances. Furthermore, all of the techniques discussed in the 
previous sections can be applied directly to extract quantitative information. 

In addition, our method may be applied to systems for which the stream function is 
not known. One needs to look at a sequence of steady-state flows and find a saddle 
stagnation point attached to itself or other points by a stagnation streamline for each 
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flow in the sequence. If the position of that stagnation streamline changes over an O(1) 
distance in this family of steady states, then one can modulate the flow in time as we 
do, and the leading-order terms for the transport quantities may be obtained directly 
from measurements of the steady-state flows at the instants of time corresponding to 
the peaks and valleys of the modulation protocol. These measurements can be made, 
for example, from photographic or digitized images of the steady-state flow. Thus, in 
the case of some cavity flow or geophysical applications (Hoffman & McKenzie 1985), 
in which the stream function is often not known or known only approximately, further 
analytical results are possible. 

It may even be possible to get mixing when the saddle stagnation point disappears 
for part of the modulation period, although this does not appear to be as efficient as 
the cases considered here. Coppola & Rand (1991) give a mechanical example of such 
an adiabatic Hamiltonian system. Also, no analytic techniques, such as KAM theory 
or Melnikov theory, exist to handle this class of problems. 

9.3. Molecular difusion 
In the foregoing sections, we have restricted ourselves to simulating the ideal case in 
which the transport of tracer particles in the quasi-steady Stokes flow occurs only via 
convection. We now make our study more realistic and consider also the impact of 
molecular diffusion in the transport process. Our results show that diffusion of tracer 
particles is important from the beginning of any experiment and has a macroscopic 
impact on the location of convectively transported tracer particles. 

In the simulations, we model the effects of molecular diffusivity by adding a term 
representing the Brownian motion that a tracer particle experiences due to molecular 
diffusivity to the characteristic equations (the purely convective model) of the partial 
differential equation governing the advection and diffusion of tracer concentration. In 
particular, we use a generalized Langevin equation : 

z = E ,  

where $ is the stream function used in the purely convective simulations, and &(t), 
i = 1,2, are random variables drawn from a Gaussian probability distribution 
characterized by the following correlations : 

for i,j = 1,2 and i + j .  See Chandrasekhar (1943) for the theory of Brownian motion, 
and Dutta & Chevray (1991) for another study of diffusive effects in chaotic Stokes 
flows. 

The amount by which patches are stretched is somewhat enhanced due to diffusion. 
In particular, the locations of the ' tips' of patches are changed by amounts on the 
order of 5 % 2 % of the length of the spiral-shaped patch for D = in the first 
period alone. This percentage was smaller for D = and larger for D = lo-'. 
Although an effect of small magnitude may seem insignificant at first glance, it is 
enhanced in subsequent periods because, as time goes on, convection will also stretch 
these extra pieces of the deformed patch exponentially. 
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Furthermore, most of the boundary of a deformed patch remains almost as sharp as 
it was in the purely convective case. Taking into account that each data point in our 
numerical simulations represents an infinitesimal area element that gets stretched 
during the modulation, we find that the deformed patch is narrower on average by an 
amount that is less than 1 % of the convectively stretched patch when D = The 
exceptions to this finding are the pieces of the boundary near the ‘tips ’ of the patch, 
which become fuzzier than they are in the purely convective model. 

We thank Tony Leonard for his input and criticisms during various stages of this 
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